:: 트랜지스터의 데이터시트 보는법
TR의 특성은 콜렉터 전압, 이미터 전류(혹은 콜렉터 전류), 주위 온도 등에 따라서 크게 달라집니다.

따라서 TR의 특성을 나타낼 때는 위의 조건을 고려하고 일정한 기준을 정할 필요가 있는데 일반적으로 소출력 TR일 경우에는 콜렉터 전압 6V, 이미터 전류 1mA, 주위온도 25도의 조건 하에서 측정한 결과를 나타내고 있습니다. 수 mW이하의 출력을 낼 수 있는 TR은 소출력 TR이라고 하고 수십mW ~ 수백mW의 출력을 낼 수 있는 TR은 중출력, 수W 이상의 출력을 낼 수 있는 TR은 대출력 TR이라고 합니다.

TR은 종류가 많기 때문에 특성을 일일히 기억해 두었다가 이용하는 것은 현실적으로 거의 불가능합니다.

그러므로 TR을 이용할때는 각종 TR의 여러가지 특성을 수록한 TR의 데이터시트를 이용하지 않으면 안됩니다.
  형명
형명은 TR고유의 명칭입니다. 즉, 2SA12, 2SA49, 2SC1815 등의 이름을 말합니다.
  최대정격
TR을 사용할 수 있는 최고 한도의 값을 나타냅니다.
Ta = 25도인 경우 주위온도가 25도 일때 TR이 정상작동 할 수 있는 최고의 한계값을 나타냅니다. 만약 최대 정격 이상으로 동작하게 되면 TR의 특성이 변하거나 수명이 짧아지며 너무 지나치게 되면 TR이 파손될 수 있습니다.
  최대 VCBO
VCBO는 Vcmax라고 표시하는 경우도 있습니다. 이는 다음과 같은 뜻을 가지고 있습니다.
위의 그림과 같이 콜렉터와 베이스 사이에 역방향 전압 VCB를 공급하고 이 전압을 점점 높여가면 콜렉터와 베이스 사이에 흐르는 전류 ICBO는 아래의 그림과 같이 극히 적은 값으로 거의 일정하게 흐르다가 어느 한계점에 도달하면 역방향 전류가 급격히 증가하는 지점이 있습니다.
이 때 전류가 급격히 증가하기 시작하는 것은 PN접합부에 역방향 전압이 정도 이상으로 너무 높게 걸려서 강전계의 의하여 반도체 내에 공유결합을 하고 있던 전자가 튀어나와 전원의 -측으로부터 +측으로 이동하므로 역방향 특성을 읽기 때문입니다.

이때 역방향 특성을 잃어버리기 시작하는 한계점의 전압을 콜렉터와 베이스 사이의 항복전압이라고 합니다. 이와 같은 항복전압이 걸려있는 상태에서는 TR이 TR로서의 정상적인 동작을 할 수 없습니다.

따라서 TR이 정상적으로 동작할 수 있으려면 콜렉터에는 항상 항복전압보다 낮은 전압을 공급하지 않으면 안됩니다.
  최대 VEBO
아래 그림과 같이 콜렉터를 차단시킨 상태에서 이미터와 베이스 사이에 역방향으로 공급할 수 있는 최대 전압을 나타냅니다.
이것은 위에서 설명한 것과 같이 콜렉터를 차단시킨 상태에서 이미터와 베이스간 역방향의 항복전압보다 약간 낮은 전입입니다.

만약 최대 VEBO이상의 전압이 공급되면 역방향 특성이 없어지고 심하면 TR의 특성이 변하거나 파손됩니다.
  최대 Ic
Icmax라고도 표시하기도 합니다. 이는 콜렉터에 흘릴 수 있는 최고 한도의 전류를 나타낸 것입니다.

그 이상으로 전류를 흘리면 특성이 변화되거나 수명이 짧아지고 심하면 파손될 수도 있습니다.
  최대 Pc
Pcmax라고도 표시하기도 합니다. 이것은 콜렉터의 최대 허용 전력손실을 나타냅니다.

TR을 동작시킬때는 콜렉터에 전압을 공급하고 콜렉터 전류를 흘리기때문에 콜렉터에서는 상당한 전력이 소비됩니다.
이 때 소비되는 전력은 콜렉터측 PN접합부의 온도를 높이므로 소비전력이 어느정도 이상으로 증가하면 TR이 과열되어 파손되는 것입니다. 이와 같이 TR은 전력소비에 한도가 있는데 이것이 콜렉터의 최대 허용 전력손실입니다.

데이터 시트에 나와있는 최대 정격 Pc는 주위온도가 25도일때 콜렉터의 최대 허용 손실전력입니다.
이와 같은 콜렉터의 최대 허용 손실전력은 같은 TR일지라도 주위의 온도가 높을때는 TR이 쉽게 과열되므로 콜렉터의 호용 손실적력이 감소되는데 일반적으로 주위온도가 1도 상승하는데 약 2%정도의 비율로 허용 손실전력이 감소됩니다.

수십mW ~ 수백mW의 출력을 낼 수 있는 중출력용 TR이나 수W 이상의 출력을 낼 수 있는 대출력 TR이 각각 최대의 출력을 낼 때는 주위온도가 50~60도까지 상승하므로 중출력 TR이나 대출력 TR을 사용할 때는 주위온도를 50~60도로 간주하고 허용 손실 전력을 환산해야 합니다.
  ICBO
이것은 아래의 그림과 같이 이미터 측을 차단하고 콜렉터와 베이스 사이에 역방향전압 VCB를 공급했을 때 콜렉터에 흐르는 전류의 크기를 나타내는 것인데 이것을 콜렉터 차단전류라고 합니다.
차단전류는 동형의 TR일때 작은 것일 수록 성능이 좋은 것입니다.
  hfe
hfe는 아래의 그림과 같이 이미터 공통 접속(또는 이미터접지라고도 함) 회로에서 베이스에 펄스 전류 Ib를 흘릴때 콜렉터측에 증폭된 펄스전류 Ic를 측정하여 Ib로 Ic를 나누어 얻은 값을 나타냅니다.
따라서 이 값을 이미터접지때의 펄스 전류 증폭율 또는 직류 전류 증폭율이라고 합니다.
여러개의 TR을 이용하여 다단으로 증폭을 할 경우에 마지막단의 TR에는 앞에서 증폭된 큰 신호 전력이 공급되므로 마지막단의 TR, 즉 출력단의 TR은 큰 신호 전력이 공급될 때의 전류증폭율을 사용하는 것이 정확합니다. 따라서 마지막 단에 많이 이용하는 중출력 TR이나 대출력 TR은 대부분 충분히 큰 펄스 전류를 베이스에 흘리고 그때 흐르는 콜렉터의 펄스 전류를 측정하여 증폭율을 구하고 이것을 데이터시트에 hfe로 나타내는 것입니다.
그러므로 이것을 대신호 증폭율이라고도 합니다.
TR의 증폭율을 측정할때는 위의 그림에서 Ib = 2mA 일때 Ic = 100mA가 흐르고 전류를 증가시켜서 Ib = 3mA가 흐를때 Ic = 150mA가 흐른다고 가정하면,

hfe = 콜렉터 전류의 변화량 / 베이스전류의 변화량 = (150 - 100) / (3 - 2) = 50 / 1 = 50이 됩니다. 따라서 이때 이미터 접지때의 진류전류 증폭율은 50이라고 합니다.

여기서 변화시킨 베이스전류가 측정하는 TR의 베이스 전류로서 충분히 큰 편일때는 대신호 증폭율(hFE)이라고 하고 작은 편이면 소신호 증폭율(hfe)이라고 합니다.
  fT(트랜지션 주파수)
증폭하는 신호의 주파수가 높아지면 전류 증폭율이 점점 저하되는데 이미터 접지때에 주파수가 높아져서 증폭율이 1이 되는 때의 주파수를 트랜지션 주파수라고 합니다.
높은 주파수에서의 hfe는 주파수가 2배로 높아지면 증폭율은 1/2로 저하되므로 고주파에서의 fT = hfe x (측정 주파수)의 관계가 성립됩니다.

즉 측정주파수가 높을때는 대신 증폭율이 저하되어 측정주파수와 증폭율의 곱은 항상 fT로서 일정합니다.

따라서 fT는 증폭율과 측정 주파수를 곱한 것과 같기 때문에 이득대역폭이라고도 합니다. fT값이 높은 것일 수록 높은 주파수를 증폭할 수 있는 TR입니다.

θ
이것은 열저항이라 하는 것으로 TR의 전력손실에 의한 온도 상승율을 나타내는 것입니다.
예를 들어서 콜렉터 손실전력이 1W 증가하는데 따라 콜렉터 접합부의 온도가 3도 높아진다면 그 TR의 열저항(θ)은 3도/W라 합니다.

이와 같이 열저항이 표시되어 있을때는 콜렉터의 최대 허용 손실전력 (Pc)도 다음과 같이 계산하여 알 수 있습니다.

Pc = (Tj - Ta) / θ

(Pc = 최대허용 손실 전력, Tj = 접합부 온도, Ta = 주위 온도, θ = 열저항)
  PG (Power Gain)
TR의 베이스와 이미터사이(입력)에 신호 전력을 공급하면 콜렉터와 이미터(출력)사이에는 증폭된 전력이 나옵니다.
만약 TR입력측에 2W의 전력을 공급하였을 때 전력이 증폭되어 출력측에 100W의 전력이 나온다면 그 TR의 전력증폭도는 100 / 2 = 50이 된다고 합니다.
이와같이 입력측에 공급된 신호전력으로 출력측에 증폭되어 나오는 신호전력을 나누어 얻은 값을 전력 증폭도라 합니다. 전력 증폭도는 편의상 데시벨(db)라는 단위로 환산하여 나타내며 이것을 전력이득(PG : Power Gain)이라고 합니다.

전력 증폭도를 db로 환산하여 나타내면 음성 증폭기일 경우 귀에 느껴지는 정도를 곧 알 수 있으며 종합증폭도 계산이 간편해 진다는 장점이 있습니다.

'전자공학 > 기초전자부품' 카테고리의 다른 글

8.기본 설계법  (0) 2010.03.03
7.FET란?  (0) 2010.03.03
5.트랜지스터의 분류  (0) 2010.03.03
4.트렌지스터란?  (0) 2010.03.03
3.다이오드의 종류  (0) 2010.03.03
:: 구조에 따른 분류
트랜지스터의 동작구조상 차이에 따라 바이폴러(bipolar) 트랜지스터와 유니폴라(unipolar) 트랜지스터로 분류 할 수 있습니다.
  바이폴러 트랜지스터
Bi(2개) Polar(극성)의 의미로서 트랜지스터를 구성하는 반도체에 정공(플러스극성)과 전자(마이너스극성)에 의해 전류가 흐르게 되어있는것을 바이폴러 트랜지스터라고 합니다. 일반적인 트랜지스터는 실리콘으로 되어 있는 바이폴러 트랜지스터를 가리킵니다.
  FET
Field Effect Transistor의 약어로 전계 효과 트랜지스터라 하며 접합형 FET와 MOS형 FET 및 GaAs형 FET가 있습니다. 접합형 FET는 오디오 기기등 아날로그 회로에 많이 이용되며 MOS형 FET는 주로 마이크로컴퓨터 등의 디지탈 IC에 사용도ㅣ고 있습니다. GaAs형FET는 위성방송 수신 등의 마이크로파의 증폭에 사용됩니다.
  ※MOS
Metal Oxide Semiconductor의 약어로 그 구조가 금속(Metal), 실리콘 산화막(Oxide), 반도체(Semiconductor)의 순으로 되어 있어서 MOS로 불리고 있습니다. MOS에는 P형과 N형, C형이 있으며 소비 전류를 작게 할 수 있기 때문에 마이크로컴퓨터 등 집적도가 높은 IC에 사용됩니다.
:: 허용전력에 따른 분류
주로 최대정격의 콜렉터 손실 Pc에 따라 분류하는 방법입니다. 크게 나누어 소신호 트랜지스터와 파워트랜지스터로 분류하며 일반적으로 파워트랜지스터라 하면 1 W이상의 것을 가리킵니다.
  소신호 트랜지스터
최대 콜렉너 전류(IC max)가 500 mA 이하, 최대 콜렉터 손실(PC max) 1 W미만의 트랜지스터를 파워트랜지스터에 비해 소신호 트랜지스터로 부르며 일반적으로 수지몰드 타입이 많은 것이 특색입니다.
파워트랜지스터
일반적으로 파워트랜지스터라고 할 때는 PC 1W 이상의 것을 가리킵니다. 소신호 트랜지스터에 비해 최대 콜렉터 전류와 최대 콜렉터 손실이 크고 발열에 대비하여 형상도 크고 금속으로 쉴드 되어 있거나 방열핀 이 첨부되기도 합니다.
:: 트랜지스터의 세부 분류
트랜지스터는 반도체 가운데에서도 가장 많이 쓰여왔던 기본적인 반도체 부품으로 증폭 작용을 발견하여 사용되기 시작 하였습니다. 트랜지스터에는 상당히 많은 종류가 있으며 용도나 특성에 따라 아주 많은 종류가 만들어지고 있으나 흔히 사용되며 비교적 쉽게 입수할 수 있는 것으로서 기본적인 분류를 한다면 아래와 같습니다.
  트랜지스터
접합형의 트랜지스터로「전류」를 증폭하는 작용이 있습니다 .

NPN 트랜지스터
접합의 구성에 의한 종류로 플러스 전원으로 동작합니다.
2SC××× :고주파 용(저주파용에도 사용할 수 있다)
2SD××× :저주파 용


PNP 트랜지스터
접합의 구성에 의한 종류로 마이너스 전원으로 동작합니다.
2SA××× :고주파 용(저주파용에도 사용할 수 있다)
2SB××× :저주파 용

고주파용과 저주파용의 구별은 명확하지 않으며 제조업체(등록업체)의 지정에 의해 정해집니다. 예를들면 200MHz 정도의 저주파용도 있는가 하면 30MHz 이하의 고주파용도 있습니다.
  전계효과 트랜지스터(FET)
진공관과 비슷한 원리로 입력 전압으로 출력 전류를 제어하는 특성을 갖고 있습니다.

접합형 FET : 입력 게이트가 반도체의 접합으로 구성되고 있는 FET 로 트랜지스터와 비교하여 훨씬 적은 입력 전류로 동작합니다.

MOS 형 FET: 입력 게이트가 산화 실리콘 박막으로 절연되어 있는 FET로 상당히 높은 입력 임피던스전류가 흐르지 않는)를 갖고 있는 것이 특징입니다.
:: 회로도 기호
회로기호
약호
명칭
기능
TR PNP 트랜지스터 증폭 및 스위칭
TR NPN 트랜지스터 증폭 및 스위칭
FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용
FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용
MOS FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용
MOS FET 전계 효과 트랜지스터 고 입력 임피던스, 증폭 및 스위칭용

'전자공학 > 기초전자부품' 카테고리의 다른 글

7.FET란?  (0) 2010.03.03
6.:: 트랜지스터의 데이터시트 보는법  (0) 2010.03.03
4.트렌지스터란?  (0) 2010.03.03
3.다이오드의 종류  (0) 2010.03.03
2.다이오드의 특성 출처:icbank.co.kr  (0) 2010.03.03
N형 반도체와 P형 반도체를 PNP / NPN 형태로 접합한 구조의 소자로 전류의 흐름등을 조절할 수 있도록 하여 만든 회로구성에서 중요한 반도체 소자입니다. 세 가지 기능, 즉 스위칭, 검파, 증폭용으로써 모든 전자 시스템에 한가지 또는 여러 가지 형태로 사용됩니다.
 
:: 트랜지스터의 역사
1948년에 세명의 물리학자 (W. Shockley, J. Bardeen, W. Brattain)에 의해 트랜지스터가 발명되었으며 당시 전자 공업계에 상당한 충격을 주었습니다. 그로부터 전자 산업은 빠르게 발전하기 시작했으며 오늘날 엘렉트로닉스 시대의 개막에 시초가 되었습니다. 그 후의 컴퓨터를 시작으로 전자공학의 급속한 발전은 우리의 생활을 편리하고 풍부하게 해 주었습니다.

트랜지스터는 당초 게르마늄이라는 반도체로 만들어?으나 게르마늄은 약 80℃정도의 온도밖에 견디지 못하는 결점이 있었습니다. 이때문에 지금에 와서는 거의 실리콘을 이용하고 있으며 실리콘은 약 180℃ 이상의 온도에도 견딜 수 있는 물질입니다.
:: 트랜지스터의 동작원리
PNP형 트랜지스터의 동작원리
P형, N형, P형의 반도체를 아래 그림과 같이 접합하고 각 반도체로부터 도선을 내놓으면 PNP형 트랜지스터가 됩니다. 세 조각의 반도체중 가운데의 엷은 막으로 되어있는것은 베이스(B : Base)라고 하고 베이스의 양쪽에 있는 다른 종류의 반도체중 작은 쪽은 이미터(E : Emitter)라 하며 큰 쪽은 콜렉터(C : Collector)라고 합니다.
위의 그림과 같은 트랜지스터(TR)는 P형, N형, P형의 순서로 접합되어 있으므로 PNP형 트랜지스터라고 합니다.

PNP형 TR을 아래의 그림과 같이 이미터와 베이스 사이에 순방향으로 전압 VBE를 공급하면 이 때는 PN접합의 2극에서 순방향 전압을 공급한 것이 되므로 이미터에서 베이스 측으로 정공이 이동하여 그림의 점선과 같이 순방향 전류가 흐르게 됩니다. 이때 전자는 정공과 반대 방향으로 즉, 베이스에서 이미터측으로 이동합니다.
이 때 아래의 그림과 같이 콜렉터와 베이스 사이에 역방향으로 더 높은 전압 VCE를 공급하면 이미터에서 베이스 측으로 들어가던 정공의 대부분이 콜렉터 측의 높은 전압에 끌려 콜렉터 측으로 이동하고 소수의 정공만이 베이스측으로 이동합니다. 즉 대부분의 전류는 콜렉터 측으로 흐르고 작은 전류가 베이스측으로 흐르게 됩니다.
순방향 전압 VBE에 의하여 이미터 측의 정공이 이동 할 때는 원래 베이스 측으로 이동하기 위하여 베이스의 영역내로 들어가게 되나 정공이 베이스의 영역에 일단 들어가면 훨씬 높은 전압이 걸려있는 콜렉터에 가까워 졌으므로 정공은 대부분 콜렉터에 끌려가고 소수의 정공이 베이스 측으로 이동하게 되는 것입니다.

그러므로 순방향 전압 VBE를 높여서 이미터로부터 베이스측으로 들어가는 정공의 수를 많아지게 하면 거기에 비례하여 콜렉터 측으로 끌려가는 정공의 수도 자연히 많아지게 됩니다.
따라서 TR은 순방향 전압 VBE에 의하여 베이스 전류(Ib)를 증가시키면 콜렉터 전류(Ic)는 자연히 증가하게 되는 것입니다. 이와 같은 원리로 동작하는 TR은 일반적으로 콜렉터 전류가 베이스 전류보다 수배~수십배로 증가하여 흐릅니다.
위와 같은 경우 이미터 전류(Ie)를 100mA흐르게 하면 콜렉터 전류 (Ic)는 99mA가 흐르고 베이스전류(Ib)는 1mA가 흐르게 됩니다. 마찬가지로 이미터 전류(Ie)를 200mA흐르게 하면 콜렉터 전류 (Ic)는 198mA가 흐르고 베이스전류(Ib)는 2mA가 흐르게 됩니다. 그러므로 이런 TR은 Ib가 1mA에서 2mA로 1mA증가할때 Ic는 99mA에서 198mA로 99mA가 증가하게 되므로 Ic는 Ib의 99배나 확대되어 흐르는 것이 됩니다.

이와 같은 예에서 Ic는 Ib가 99배 전류증폭이 되었다고 하며 이 TR은 전류증폭률이 99라고 합니다.

이 처럼 TR은 베이스 측으로 약간의 전류만 흘려도 콜렉터 측으로는 수배내지 수십배로 큰 전류가 흐르게 하는 전류 증폭 자용이 있는 것입니다. 그리고 이때 이미터에 흐르는 전류(Ie)는 콜렉터 전류 (Ic)와 베이스 전류(Ib)로 나누어져 흐르므로 항상 Ie = Ic + Ib의 관계가 성립합니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용
  NPN형 트랜지스터의 동작원리
위의 그림은 N형, P형, N형의 순으로 서로 잡합된 NPN형 트랜지스터입니다.

NPN형 트랜지스터 역시 PNP형 트랜지스터와 같이 가운데에 엷은 막으로 되어 있는 것이 베이스이고 양쪽에 있는 다른 종류의 반도체 중 작은 쪽은 이미터이며 큰 쪽은 콜렉터입니다.
PNP형에서는 이미터에 들어있는 정공이 전류를 운반하였으나 NPN형에서는 이미터에 들어있는 전자가 전류를 운반합니다. NPN형 트랜지스터에서는 이미터에서 베이측으로 들어가던 전자의 대부분이 콜렉터 측의 +전압에 끌려가는 동작을 합니다. 즉 아래의 그림과 같이 NPN형 트랜지스터의 이미터-베이스 사이에 순방향 전압 VEB를 공급하면 이미터에서 콜렉터 측으로 전자가 이동합니다.
전류는 전자의 방향과 반대이므로 이 때 전류는 베이스에서 이미터측으로 흐릅니다.
그런데 이 때 아래의 그림과 같이 콜렉터-베이스 사이에 역방향으로 더 높은 전압 VCB를 공급하면 이미터에서 베이스 측으로 들어가던 전자의 대부분이 콜렉터 측의 높은 전압에 끌려 콜렉터 측으로 이동하게 되는 것입니다.
여기에서도 Ib가 흐르면 Ic가 흐르고 Ib가 증가하면 Ic가 수배내지 수십배 정도로 크게 증폭되어 흐릅니다.

트랜지스터의 기능을 수도에 비유해 보면 이해가 쉽습니다.
베이스는 수도의 벨브, 콜렉터는 수도꼭지 그리고 이미터는 수도배괸에 비유할 수 있습니다. 수도벨브를 작은힘(베이스의 입력신호)으로 콘트롤 하여 수도꼭지에서 많은 물이 나오며 물의 양(콜렉터 흐르는 전류)을 조절한다고 생각하면 이해하면 정확합니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용

+ Recent posts