N형 반도체와 P형 반도체를 PNP / NPN 형태로 접합한 구조의 소자로 전류의 흐름등을 조절할 수 있도록 하여 만든 회로구성에서 중요한 반도체 소자입니다. 세 가지 기능, 즉 스위칭, 검파, 증폭용으로써 모든 전자 시스템에 한가지 또는 여러 가지 형태로 사용됩니다.
 
:: 트랜지스터의 역사
1948년에 세명의 물리학자 (W. Shockley, J. Bardeen, W. Brattain)에 의해 트랜지스터가 발명되었으며 당시 전자 공업계에 상당한 충격을 주었습니다. 그로부터 전자 산업은 빠르게 발전하기 시작했으며 오늘날 엘렉트로닉스 시대의 개막에 시초가 되었습니다. 그 후의 컴퓨터를 시작으로 전자공학의 급속한 발전은 우리의 생활을 편리하고 풍부하게 해 주었습니다.

트랜지스터는 당초 게르마늄이라는 반도체로 만들어?으나 게르마늄은 약 80℃정도의 온도밖에 견디지 못하는 결점이 있었습니다. 이때문에 지금에 와서는 거의 실리콘을 이용하고 있으며 실리콘은 약 180℃ 이상의 온도에도 견딜 수 있는 물질입니다.
:: 트랜지스터의 동작원리
PNP형 트랜지스터의 동작원리
P형, N형, P형의 반도체를 아래 그림과 같이 접합하고 각 반도체로부터 도선을 내놓으면 PNP형 트랜지스터가 됩니다. 세 조각의 반도체중 가운데의 엷은 막으로 되어있는것은 베이스(B : Base)라고 하고 베이스의 양쪽에 있는 다른 종류의 반도체중 작은 쪽은 이미터(E : Emitter)라 하며 큰 쪽은 콜렉터(C : Collector)라고 합니다.
위의 그림과 같은 트랜지스터(TR)는 P형, N형, P형의 순서로 접합되어 있으므로 PNP형 트랜지스터라고 합니다.

PNP형 TR을 아래의 그림과 같이 이미터와 베이스 사이에 순방향으로 전압 VBE를 공급하면 이 때는 PN접합의 2극에서 순방향 전압을 공급한 것이 되므로 이미터에서 베이스 측으로 정공이 이동하여 그림의 점선과 같이 순방향 전류가 흐르게 됩니다. 이때 전자는 정공과 반대 방향으로 즉, 베이스에서 이미터측으로 이동합니다.
이 때 아래의 그림과 같이 콜렉터와 베이스 사이에 역방향으로 더 높은 전압 VCE를 공급하면 이미터에서 베이스 측으로 들어가던 정공의 대부분이 콜렉터 측의 높은 전압에 끌려 콜렉터 측으로 이동하고 소수의 정공만이 베이스측으로 이동합니다. 즉 대부분의 전류는 콜렉터 측으로 흐르고 작은 전류가 베이스측으로 흐르게 됩니다.
순방향 전압 VBE에 의하여 이미터 측의 정공이 이동 할 때는 원래 베이스 측으로 이동하기 위하여 베이스의 영역내로 들어가게 되나 정공이 베이스의 영역에 일단 들어가면 훨씬 높은 전압이 걸려있는 콜렉터에 가까워 졌으므로 정공은 대부분 콜렉터에 끌려가고 소수의 정공이 베이스 측으로 이동하게 되는 것입니다.

그러므로 순방향 전압 VBE를 높여서 이미터로부터 베이스측으로 들어가는 정공의 수를 많아지게 하면 거기에 비례하여 콜렉터 측으로 끌려가는 정공의 수도 자연히 많아지게 됩니다.
따라서 TR은 순방향 전압 VBE에 의하여 베이스 전류(Ib)를 증가시키면 콜렉터 전류(Ic)는 자연히 증가하게 되는 것입니다. 이와 같은 원리로 동작하는 TR은 일반적으로 콜렉터 전류가 베이스 전류보다 수배~수십배로 증가하여 흐릅니다.
위와 같은 경우 이미터 전류(Ie)를 100mA흐르게 하면 콜렉터 전류 (Ic)는 99mA가 흐르고 베이스전류(Ib)는 1mA가 흐르게 됩니다. 마찬가지로 이미터 전류(Ie)를 200mA흐르게 하면 콜렉터 전류 (Ic)는 198mA가 흐르고 베이스전류(Ib)는 2mA가 흐르게 됩니다. 그러므로 이런 TR은 Ib가 1mA에서 2mA로 1mA증가할때 Ic는 99mA에서 198mA로 99mA가 증가하게 되므로 Ic는 Ib의 99배나 확대되어 흐르는 것이 됩니다.

이와 같은 예에서 Ic는 Ib가 99배 전류증폭이 되었다고 하며 이 TR은 전류증폭률이 99라고 합니다.

이 처럼 TR은 베이스 측으로 약간의 전류만 흘려도 콜렉터 측으로는 수배내지 수십배로 큰 전류가 흐르게 하는 전류 증폭 자용이 있는 것입니다. 그리고 이때 이미터에 흐르는 전류(Ie)는 콜렉터 전류 (Ic)와 베이스 전류(Ib)로 나누어져 흐르므로 항상 Ie = Ic + Ib의 관계가 성립합니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용
  NPN형 트랜지스터의 동작원리
위의 그림은 N형, P형, N형의 순으로 서로 잡합된 NPN형 트랜지스터입니다.

NPN형 트랜지스터 역시 PNP형 트랜지스터와 같이 가운데에 엷은 막으로 되어 있는 것이 베이스이고 양쪽에 있는 다른 종류의 반도체 중 작은 쪽은 이미터이며 큰 쪽은 콜렉터입니다.
PNP형에서는 이미터에 들어있는 정공이 전류를 운반하였으나 NPN형에서는 이미터에 들어있는 전자가 전류를 운반합니다. NPN형 트랜지스터에서는 이미터에서 베이측으로 들어가던 전자의 대부분이 콜렉터 측의 +전압에 끌려가는 동작을 합니다. 즉 아래의 그림과 같이 NPN형 트랜지스터의 이미터-베이스 사이에 순방향 전압 VEB를 공급하면 이미터에서 콜렉터 측으로 전자가 이동합니다.
전류는 전자의 방향과 반대이므로 이 때 전류는 베이스에서 이미터측으로 흐릅니다.
그런데 이 때 아래의 그림과 같이 콜렉터-베이스 사이에 역방향으로 더 높은 전압 VCB를 공급하면 이미터에서 베이스 측으로 들어가던 전자의 대부분이 콜렉터 측의 높은 전압에 끌려 콜렉터 측으로 이동하게 되는 것입니다.
여기에서도 Ib가 흐르면 Ic가 흐르고 Ib가 증가하면 Ic가 수배내지 수십배 정도로 크게 증폭되어 흐릅니다.

트랜지스터의 기능을 수도에 비유해 보면 이해가 쉽습니다.
베이스는 수도의 벨브, 콜렉터는 수도꼭지 그리고 이미터는 수도배괸에 비유할 수 있습니다. 수도벨브를 작은힘(베이스의 입력신호)으로 콘트롤 하여 수도꼭지에서 많은 물이 나오며 물의 양(콜렉터 흐르는 전류)을 조절한다고 생각하면 이해하면 정확합니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용

 
  1) Forward Voltage
순방향 전압으로 순방향으로 전류가 흐를때 강하되는 전압을 말합니다. 마찬가지로 최소한 순방향 강하전압 이상의 전압을 가해야만 전류가 흐를 수 있습니다.
  2) Peak Reverse Voltage
순간 허용 역전압으로 지속적이지 않고 순간적으로 허용되는 역방향 전압을 말합니다.
  3) RMS Reverse Voltage
역방향 실효전압으로 역방향으로 허용되는 교류 실효전압을 말합니다.
  4) Maximum Reverse Leakage Current
최대 역방향 누설전류로 역방향으로 접속되었을 때의 최대 누설전류를 말합니다.
  5) Forward Continuous Current
순방향 허용 전류로 순방향으로 접속되었을때 허용되는 최대 전류를 말합니다.
  6) Norminal Zener Volatage
정격 제너 전압으로 제너 다이오드의 경우 실온에서의 제너 전압을 말합니다.
  7) Average Rectified Output Current
평균 정류 전류로 정류 다이오드의 경우 허용되는 평균 전류량을 말합니다.
  8) Thermal Resistance
열저항으로 내부 접점으로부터 외부 공기까지의 열저항을 말합니다.

  1) Forward Voltage
순방향 전압으로 순방향으로 전류가 흐를때 강하되는 전압을 말합니다. 마찬가지로 최소한 순방향 강하전압 이상의 전압을 가해야만 전류가 흐를 수 있습니다.
  2) Peak Reverse Voltage
순간 허용 역전압으로 지속적이지 않고 순간적으로 허용되는 역방향 전압을 말합니다.
  3) RMS Reverse Voltage
역방향 실효전압으로 역방향으로 허용되는 교류 실효전압을 말합니다.
  4) Maximum Reverse Leakage Current
최대 역방향 누설전류로 역방향으로 접속되었을 때의 최대 누설전류를 말합니다.
  5) Forward Continuous Current
순방향 허용 전류로 순방향으로 접속되었을때 허용되는 최대 전류를 말합니다.
  6) Norminal Zener Volatage
정격 제너 전압으로 제너 다이오드의 경우 실온에서의 제너 전압을 말합니다.
  7) Average Rectified Output Current
평균 정류 전류로 정류 다이오드의 경우 허용되는 평균 전류량을 말합니다.
  8) Thermal Resistance
열저항으로 내부 접점으로부터 외부 공기까지의 열저항을 말합니다.

'전자공학 > 기초전자부품' 카테고리의 다른 글

6.:: 트랜지스터의 데이터시트 보는법  (0) 2010.03.03
5.트랜지스터의 분류  (0) 2010.03.03
4.트렌지스터란?  (0) 2010.03.03
3.다이오드의 종류  (0) 2010.03.03
1.다이오드란? 출처:icbank.co.kr  (0) 2010.03.03
다이오드란 한 방향으로만 전류를 흐르게 하는 부품입니다. 이런 다이오드의 성질을 이용하여 교류를 직류로 변환하는 정류작용이나 방송 전파 내에 포함되어 있는 음성 신호를 검파하는 데 이용하기도 합니다.
:: P형 반도체와 N형 반도체
P형 반도체는 순수 실리콘(Si)이나 게르마늄(Ge)에 극소량의 3가 원소 인디움(In)을 혼합하면 원자 대신 3가인 인디움 원자가 게르마늄과 공유결합을 하게 되는데 이때 인디움 원자는 4가인 게르마늄 원자보다 1개의 전자가 부족하게 됩니다. 그러므로 부족한 전자를 채우기 위해 주위에서 전자를 끌어당기는 흡인력을 나타내게 됩니다. 여기서 전자가 부족한 곳은 (-)전하를 가진 전자를 끌어들이려 하므로 마치 (+)전하가 있는 것과 같으나 실제로는 아무것도 없으므로 (+)전하의 성질을 띤 구멍이라는 뜻으로 정공(正孔; positive hole)이라고 합니다.

또한 N형 반도체는 역시 순수 실리콘이나 게르마늄에 5가 원소인 비소(As) 혹은 같은 5가원소인 안티몬(Sb)을 혼합하면 5가인 비소가 실리콘과 공유결합을 하게 되는데 비소가 가지고 있는 5개의 전자 중 4개는 4가 원소인 실리콘과의 결합에 사용하고 나머지 1개는 결합을 할 곳이 없어 남게 되므로 그 전자는 이동하기 쉬운 불안정한 상태로 남게 됩니다. 이를 자유전자 혹은 과잉전자라고 합니다.

이러한 불안정한 성질 때문에 순수한 진성 반도체와는 달리 비교적 전류가 흐르기 쉬운 상태가 됩니다.

즉 P형 반도체는 정공을, N형 반도체는 자유전자를 캐리어(Carrier)로 많이 가지고 있다고할 수 있습니다. 캐리어란 전류의 운반체(Carrier)와 같은 역할을 하여 붙여진 이름입니다.
:: 다이오드의 구조와 원리
다이오드는 위에서 설명한 P형 반도체와 N형 반도체를 아래의 그림과 같이 접합 한 것입니다.
이와 같이 P형 반도체와 N형 반도체를 접합하면 P형 반도체와 N형 반도체가 접합되어 있는 부근에는 서로간의 흡인력으로 인해 정공과 전자는 서로 상대 영역으로 확산이 일어나 게 됩니다.

접합부에서 P영역의 정공이 떠난 3족 원자는 음이온이 되고 , N영역의 전자가 떠난 5족은 양이온이 되게 됩니다. 이런 이온들은 원자 자체가 전기를 띤 것이므로 움직일 수 없습니다. 즉 정공과 전자의 확산으로 움직이지 않는 이온들을 만들게 되며 이 영역은 정공과 전자가 존재하지 않는 결핍층을 형성하고 전기장이 형성됩니다.

결핍층은 아래의 그림과 같이 자유전자나 정공이 전혀 없는 절연 영역이 됩니다. 이 절연 영역은 전자나 정공이 매우 이동하기 어렵습니다.
이후 확산이 진행됨에 따라 결핍층 내의 이온수가 증가하게 되고 전기장이 점점 세지게 되며 어느 순간 캐리어가 이동하려는 힘과 저지하려는 전기장의 크기가 같아지면서 확산은 중지되고 평형상태에 있게 됩니다.

이런 전기장에 의한 전위차 때문에 P영역의 정공과 N영역의 전자는 서로 상대영역으로 들어갈 수 없게 됩니다. 이 전위차를 전위장벽이라 하며 실리콘의 경우 0.7V, 게르마늄의 경우0.3V가 되며 다이오드를 통과한 전류는 전위장벽만큼 낮아진 전압이 됩니다. 이를 순방향 전압강하(Forward voltage drop, Vf)이라고 합니다. 외부에서 전위장벽보다 높은 전압을 인가하면 전위장벽을 허물 수 있으며 이때는 정공과 전자가 쉽게 이동 할 수 있는 도체가 되게 됩니다.

아래 그림과 같이 P형에 정전압, N형에 부전압을 가하면 정공과 자유전자는 서로 다른 측으로 진입하게 되어 전류가 흐르게 됩니다.. 즉 N형 반도체 안에 있는 자유전자는 전원의 부전압에 반발되어 P형으로 주입되며 P형에 가해져 있는 정전압에 흡인되어 점차 이동됩니다. 이 주입된 전자는 P형에 있는 정공과 결합하여 소멸하게 됩니다. 반대로 P형의 정공도 정전압에 반발돼 N형에 주입되어 자유전자와 결합합니다. 그러나 전원으로부터 전자와 정공이 계속적으로 보급되므로 전류는 계속 흐르게 됩니다. 전류의 방향은 전자의 이동 방향의 반대이며 정공의 움직임과 같은 방향이 됩니다.
PN접합에서는 P형에서 N형에는 전류가 흐르나, N형에서 P형으로는 흐르지 않습니다. 이와 같이 전류가 잘 흐르는 P→N방향을 순방향이라고 합니다.

반대로 아래 그림과 같이 PN접합의 P형에 부(-)의 전압을, N형에 정(+)의 전압을 가한 경우 정공은 전원의 부전압에 의해 당겨지고 자유전자는 전원의 정전압에 당겨져서 양단에 이동하고, 중앙부가 큰 저항을 나타내며 전류는 거의 흐르지 않습니다. 이때 역방향으로 흐르는 미세한 전류를 누설전류, 혹은 역방향 전류라고 부릅니다.
이때 어느 정도 이상의 역전압이 걸리게 되면 갑자기 전류가 흘러버리는 현상이 생기는 데 이때의 전압을 항복 전압이라고 합니다. 이 현상은 Avalanche와 Zener effect의 두 가지 종류가 있습니다.

Avalanche현상은 전압이 증가하다 다이오드 내부의 전자가 전압을 이기지 못하고 처음 한 개의 전자가 튀어나가면서 다른 전자도 함께 튕겨내게 됩니다. 이러한 현상이 기하급수적으로 늘어나게 되는데 마치 눈사태와 같다고 하여 avalanche 현상이라고 합니다. 이는 보통 수백V의 전압이 걸릴 때 일어나며 일시적인 현상이라 전압을 낮추게 되면 원래의 상태로 돌아가게 됩니다.

Zener effect는 PN접합의 역방향으로 전압을 걸게 되면 앞서 설명 드린 바대로 미세한 전류가 흐르게 되는데 이 전압을 높여 가면 P형 반도체에 있는 전자가 절연 영역의 미세한 구멍(공극층; 空隙層)을 통과해 N형 반도체 쪽으로 이동하는 양자역학적 터널 효과가 발생합니다. 이 때 전압을 더욱 높이면 터널도 더욱 넓어지게 되어 전류는 증가하게 되나 전압은 증가하지 않습니다. 즉 역방향에 걸리는 전압이 일정하게 되게 되는데, 다이오드 중에서 Zener Diode는 이와 같은 현상을 이용하여 정전압을 만들어내는 소자입니다.

:: 다이오드의 회로 기호
회로도 기호 명칭 설명
일반 범용 다이오드 정류 , 스위칭 , 검파용
Zener diode 정전압 다이오드
Schottky Barrier Diode 고주파 스위칭용
Variable-capacitance Diode 가변 용량 다이오드. 고주파 동조용
브릿지 다이오드 전원 정류용
발광 다이오드 디스플레이용

+ Recent posts